Pharm-05A4 Outline the mechanism of action of drugs that inhibit cholinergic transmission at the neuromuscular junction giving examples.

Background

Cholinergic transmission at the NMJ involves the following steps:

1. synthesis of acetylcholine from acetyl-CoA and choline catalysed by choline acetyltransferase (ChAT)
2. ACh packaged into vesicles and stored in axon terminus
3. nerve action potential arrives at axon terminus \rightarrow Ca$^{2+}$ influx \rightarrow release of ACh-containing vesicles into synaptic cleft
4. ACh binds to post-synaptic nAChR receptors \rightarrow depolarises post-synaptic membrane
5. ACh binds to pre-synaptic nAChR receptors \rightarrow enhance ACh release \rightarrow positive feedback
6. Acetylcholinesterases in the NMJ degrades ACh \rightarrow terminate actions of ACh

Drugs can disrupt each of the above steps thereby inhibiting cholinergic transmission

Depolarising NMB

Suxamethonium is a depolarising NMB

Chemical structure: dimer of ACh with C–C linkage

Phase I (depolarising) block mechanism: 2 molecules of sux binds the 2 alpha subunits of nAChR \rightarrow activation and channel opening \rightarrow depolarisation \rightarrow sux is not metabolised by NMJ AChE \rightarrow remains bound to nAChR \rightarrow nAChR remains open & in inactive state \rightarrow forms small zone of depolarisation/inactivation around synapse \rightarrow blocks further depolarisation \rightarrow muscle relaxation

(\sim 20% post-synaptic nAChR occupancy required to achieve depolarising block)

Sux exerts pre-junctional action \rightarrow retrograde conduction up motor neuron \rightarrow triggers axon to depolarise entire motor unit \rightarrow fasciculation observed prior to onset of depolarising block

Phase II (desensitisation) block mechanism: exact mechanism uncertain.

After sux has been present for a period of time \rightarrow motor end plates loses sensitivity to ACh/sux \rightarrow depolarisation cannot occur

Desensitisation continues (for several minutes) even after drug is no longer present

Non-Depolarising NMB

Two groups divided based on chemical structure:

1. aminosteroids – rocuronium, vecuronium
2. benzylisoquinolinium – atracurium, cisatracurium, mivacurium

Non-depolarising block mechanism: ND-NMB acts as competitive antagonist \rightarrow competes with ACh for nAChR binding \rightarrow blocks cholinergic transmission \rightarrow muscle relaxation
ND-NMB also inhibits pre-synaptic ACh receptors → prevents enhancement of ACh release → fade with repeated stimulation

Disrupts ACh synthesis

Hemicholinium blocks reuptake of choline into nerve terminal by high-affinity choline transporter at presynapse → disrupts ACh synthesis

When neuron is affected by hemicholinium, ACh synthesis relies on choline transported from the soma

Affects both nicotinic and muscarinic pharmacology

Disrupts ACh release

Many drugs can affect ACh release from presynaptic terminal

1. botulinum toxin: endocytosed into presynaptic nerve terminal → cleaves docking proteins (e.g. SNARE) → prevents docking of vesicles containing ACh → ↓ release of ACh vesicles
2. aminoglycosides (e.g. gentamicin): blocks pre-synaptic Ca²⁺ channels → ↓ release of ACh vesicles
3. high dose Mg: competitive inhibition of pre-synaptic Ca²⁺ channels → ↓ release of ACh vesicles
4. volatile anaesthetics: block pre-synaptic ACh receptors → ↓ positive feedback → ↓ACh release

Reduces efficacy of ACh at post-synaptic AChR

1. high dose local anaesthetics: blocks post-synaptic Na⁺ channels → stabilises post-synaptic membrane
2. lithium: stabilises post-synaptic membrane

Examiner’s comments - 59% pass rate

The main points expected for a pass were:
- **depolarising neuromuscular blocking agents**: eg sux, mechanism of action
- **non depolarising blocking agents**: eg cisatracurium, mechanism of action
- example and mechanise of action of at least one other mechanism inhibiting cholinergic transmission at the NMJ, such as: deficiency blockade: drugs inhibiting ACh synthesis or release; desensitisation blockade: drugs inhibiting ACh efficacy at the post junctional receptor; phase 2 blockade; channel blockade.

Extra marks were awarded for a full answer incorporating all of the above mechanisms with examples of drugs that have these effects.

Common mistakes included drawing a diagram of a normal motor end plate, including a lengthy discussion of the normal physiology of excitation-contraction coupling, without incorporating relevance to the question of the mechanisms of drug action inhibiting cholinergic transmission. Also, many candidates discussed mechanisms of
action of drugs inhibiting cholinergic transmission, but did not provide examples. Finally, many candidates did not explain how suxamethonium-induced post junctional receptor opening inhibited cholinergic transmission.