Pharm-04A2 Outline the factors determining speed of onset of neuromuscular blocking agents.

Background

Neuromuscular blocking agents (NMB) are used as part of general anaesthesia to facilitate intubation and surgery

Speed of onset is defined as the rate of achieving a given degree of muscle relaxation (e.g. 95% suppression of T1 twitch height on train of four)

Factors that affect speed of onset of muscle relaxation include:
- Drug factors
- Patient factors
- Administration factors

Drug factors

(1) type of NMB

NMBs are can be divided into depolarising and non-depolarising

Depolarising NMBs (e.g. suxamethonium) activate post-synaptic nAChR → persistent depolarisation → prevents further neuromuscular transmission

Non-depolarising NMBs (e.g. rocuronium, atracurium) competitively blocks post-synaptic nAChR → prevents depolarisation by ACh → blocks neuromuscular transmission

Depolarising NMBs require only activation of ~ 20% of nAChRs to exert clinical effect ∴ faster onset

Non-depolarising NMBs require blocking of ~ 70% of nAChRs to exert clinical effect ∴ slower onset

(2) potency of NMB

More potent the non-depolarising NMBs → clinically used at lower doses → smaller concentration gradient between plasma and NMJ → slower rate of onset (Bowman principle)

e.g. cisatracurium (ED95 = 0.03 mg/kg) is more potent than rocuronium (ED95 = 0.15 mg/kg) → cisatracurium is used at lower dose (0.15 mg/kg) than rocuronium (0.6 mg/kg) for intubation → cisatracurium (5 min to reach intubation condition) rate of onset is slower than rocuronium (2 min)

(3) dose of NMB

Higher dose of NMB → greater concentration gradient between plasma and effect site → more rapid diffusion to effect site (Fick’s law) → more rapid onset of action
(4) drug-NMB interactions

Volatile anaesthetics → vasodilatation → ↑muscle blood flow → ↑rate of NMB diffusion to muscle → ↑rate of onset
Can also directly potentiate NMB activity (des > sevo > iso > halo) via:
 - central depressant effect on α-motor neurone activity
 - inhibition of post-synaptic nAChR
 - increase NMB affinity for nAChR
Mg²⁺, local anaesthetics (in large doses), aminoglycosides can all ↑rate of onset of NMB

Acetylcholinesterase inhibitors (e.g. neostigmine) → inhibit breakdown of ACh → ↑synaptic [ACh] → competes with NMB for nAChR → ↓rate of onset

Sugammadex compounds and inactivates rocuronium (and vecuronium) → ↓concentration gradient between plasma and effect site → ↓rate of onset

Some anticonvulsants can increase clearance of NMB → ↓rate of onset

(5) priming

Priming refers to administration of a small priming dose of a non-depolarising NMB (e.g. ≤10% intubation dose) five minutes prior to administration of intubating dose of non-depolarising NMB → results in ↑↑rate of onset

Mechanism:
(1) small priming dose blocks a fraction of post-synaptic nAChRs
(2) priming dose has minimal clinical effect (∵ need a large fraction of nAChR blockade to result in noticeable clinical effect)
(3) subsequent intubating dose of non-depolarising NMB → blocks remainder of nAChRs → faster rate of onset

Patient factors

(5) cardiac output
↓cardiac output → ↓muscle perfusion → ↓rate of onset
↑age → ↓cardiac output → ↓rate of onset

(6) pathology
myasthenia gravis → less nAChRs → faster onset with non-depolarising NMB but slower onset with suxamethonium

Administration factors

More rapid injection → ↑rate of onset

Injection into central line → ↑rate of onset vs distal peripheral cannula
Intravenous faster than intramuscular for suxamethonium
Muscle groups

Different muscle groups also have different rates of onset

Muscle with greater blood flow \rightarrow reach equilibrium with plasma faster \rightarrow faster onset
Larger muscle groups have more nAChR \rightarrow slower onset
Balance of above factors

Examiner’s comments - This question had a 71% pass rate
The main factors for a pass mark were:
- **Dose of agent** noting that multiples of ED95 had faster onset of action compared to lower doses.
- **Potency of the agent** noting that more potent agents have a slower onset of action compared to equivalent doses of a less potent agent, with an explanation of this effect.
- The effect of **cardiac output** and the **perfusion to muscle groups** to distribute the agent.
- **Relevant physicochemical properties** of the agents and an explanation of their relevance.

Additional marks were awarded for identifying and explaining the differences in speed of onset between **depolarising muscle relaxants and non-depolarising neuromuscular blocking agents**, discussion of the **different speed of onset between different muscle types and groups**, the effects of **different routes** and sites of administration and the **priming principle** on speed of onset, the **effects of other drugs** and the **effects of age** and relevant **disease states**.