Physiol-11A12 Compare and contrast a single twitch and a tetanic contraction in a skeletal muscle fibre. Include in your answer the physiological basis for the development of a tetanic contraction

Background

Skeletal muscle consists of muscle fibres that contract in response to electrical stimulation

Depending on nature of electrical stimuli → different mechanical responses

Single Twitch Contraction

Single twitch = brief contraction of a motor unit – e.g. in response to brief threshold stimulus – followed by complete relaxation

Mechanism (excitation-contraction coupling)

1. Motor neuron action potential → arrives at neuromuscular junction (NMJ)
2. Depolarisation of presynaptic membrane → release of ACh
3. ACh diffuses across NMJ → binds to postsynaptic nAChR on motor endplate
4. EPSP partial depolarise motor endplate → once temporal ΣEPSP reaches threshold (-50 mV) → muscle action potential
5. Action potential propagates down whole muscle via T-tubule system → opens voltage gated L-type (dihydropyridine) Ca²⁺ channels → stimulate SR ryanodine receptors → SR releases Ca²⁺
6. ↑intracellular [Ca²⁺] → Ca²⁺ binds and unlocks troponin-tropomyosin system → activates myosin-actin cross-bridges → *muscle contraction*
7. when intracellular [Ca²⁺] falls (via ATP dependent pumps + exchangers) → *muscle relaxation*

Single twitch duration usu. 10 – 100 ms depending on fibre type

Repeated single twitches → *same force and duration*

Tetanic Contraction

Tetanic contraction = sustained maximum possible contraction of a motor unit – e.g. in response to repeated high frequency threshold stimuli

Action potential and refractory period of skeletal muscle are *very short* ∴ AP and RP are over before onset of relaxation

Thus, repetitive stimulation → summation of strength of mechanical contraction → state of tetanic contraction

With each stimuli → build up of intracellular [Ca²⁺] → ↑cross-bridges → ↑tension ∴ tetanic contraction up to 4x tension of single twitch contraction ∴ tetanic contraction consumes more energy (ATP) than single twitch
Critical Frequency Required for Tetany

Depends on the contraction-relaxation time of muscle fibre

Slow twitch fibres – contraction time ~ 100 ms
∴ require repeated stimuli > 10 Hz for tetanus

Fast twitch fibres – contraction time ~ 10 ms
∴ require repeated stimuli > 100 Hz for tetanus

Offset of Tetanus

Tetanus offset when:
- cessation of electrical stimuli → muscle action potential stops
- ATP depletion → muscle fatigue
- inhibitory effect from local lactic acidosis

Diagram – Single Twitch → Summation → Tetany

Examiner’s comments – This question was passed by 25% of candidates.

Better answers included a brief description of a skeletal muscle fibre and its contractile mechanism, definitions of a single muscle fibre twitch and tetanic contraction, an explanation of the difference between the membrane electrical refractory period and fibre relaxation time and the implications of each, the reasons re-stimulation within fibre relaxation time results in additional contraction, the role of calcium, the impact of relaxation times for different fibre types on the frequency required to create a tetanic contraction (with example values for each), and the differences between single twitch and tetanic contractions with respect to the reasons that relaxation occurs, force achieved, and energy requirements.

Common mistakes included providing excessive detail about synaptic events or excitation-contraction coupling and missing the important points above, describing summation and tetany as electrical events rather than mechanical events, and writing about the use of a nerve stimulator.